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Abstract

In the paper, the first main boundary value problem of Dynamics of Thermo-resiliency’s
momentum theory is converted into the Elliptic boundary value problem with the formal usage of
the Laplace transform. This problem is studied using the method of singular integral equations.
The solution of the first main boundary value problem is derived using the inverse Laplace
transform.
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Introduction

Let D be a finite or infinite three-dimensional space with the compact boundary S from the
class A, (a), (a > 0).
Denote by D; and S cylinders D; = D x I, S; = S X [, respectively, where [ = [0, ).
The main equations of the thermo-resiliency’s momentum theory can be written in a vector form as
follows [1], [2]:

(u+a)Au+ (A+u—a) grad divu + 2arot w — v grad 6 + pF = p 02u,
(y+8)Aw+ (B +y—¢) grad divw — 4aw + 2arotu + pY = { 0?w,

1 . 1
A9—56t9—n6t divu+ 5Q=0,

where u(x, t) = (uq,u;,u3) is a movement vector, while w(x, t) = (w1, w2, w3) is a rotation vector
and 0 (x, t) - temperature. By p, A, u, a, B,v, &, {,v,9,n are denoted resiliency constants, by F =

1296


http://www.erjournal.ru/

European Researcher, 2014, Vol.(79), Ne 7-2

(F1,Fy, F3), Y = (Y1,Y,,Y3), Q — weight power, weight moment and temperature source,

respectively.
The main equations of the thermo-resiliency’s momentum theory can be written as:
vy — 02U 196 00 vy =
M@, )U— vyl —x 1z H, A6 Sor Mo divu =Hy, (1

where M (4, ) is a differential operator of the momentum resilience theory [3] and

X = (0x,,0x,,0,), x° = ||xy ||6X6,X3 =pfori=1,23, yj = {fori=4,5,6, x) = 0fori# j,

H = (—pF,—pY), Hy === Q, U = (u,v).

The first problem states: to find in the cylinder D, the solution U = (U, 8) of the equation (1)

belonging to C1(D;) n C?(D,) and satisfying the initial and boundary conditions:
lim, o Ux, £) = 9@ (), lim_ 006, 1) = o3 (@), ImTEL = oM (), (2)

limDaxayES‘u(x t) - f(yr t), 1imD9x—>yES e(x: t) = f7(y; t): (3)

where ¢ = (1(0), 2()) fori = 0,1, k(i) = ((p1 0 ,gog(”,(p;{(i)) for k = 1,2 and ¢ for i = 0,1 are

functions given in the area D, while f = (fV, f@), f® = (fl(i), Z(i), 3(i)) fori =1,2 and f; are

functions given on S;.

The uniqueness theorem of the solution was proved for this problem in [4].
It should be mentioned that in boundary cases some conditions are required to be fulfilled [5].

Solution of the problem
The stated problem is converted into the Elliptic problem as follows below.
Consider the vector function

H = (h; hy), h = (hD,h®), h® = AP, 1P, hP) fori=1,2, (9
k k
where h = e~ 3¢ =0 (x), by = e Bt o= 08 ().
Let U = (U, 0) be a solution of the first problem, then U, = U — H will be a solution of the following
problem:

2
M(3,)Uy — vxBy — x° 552 = Hy, 4)
106 a .
MGy — 5=+ — 15 div ug = Hoy, (5)
lim, o Up Cx,€) = 0, lim 222 = 0, ©)
limDBxﬁyES uO (x, t) = f(y' t) - h(}" t) = fO (yl t)’ (7)
limDBx—)yES 90 (X, t) = f7 (}’, t) - h7 (yl t) = f07(y: t)’ (8)
where
a%h

Ho =H — M@0 )h+vyh; —x" -, (9)
Hyz = Hy — Ahg + 522 — 0= div kD, (10)

From (9) and (10) we can derive that

k —

E2), 0 =0, (55— = 0, x € D form = 0,1,2,3,4and k=0,1,2,3. (11)

Analogously, from (7) and (8) we get that

LoDy =0, QLoD fr 00y o =0,yeSform=0,..,6andk=0,..,4. (12)
Let T = ¢ + i€ be a complex variable and ¢ > g where ¢’ is a constant from [5] (condition 4). We

have:
jﬁ)(x, T) = J'OOO e_Tt ‘7{0 (x, t)dt3 ﬁ;7 (X, T) = fooo e_Tt ‘{]-[07 (x' t)dt (13)
oD = [ e foy,Ddt, forn, 1) = [} €7 for(y,Ddt. (14)
H, 37, f, fr, 0@, oD, 9 are taken from [5] according to 1y — 5, conditions, where ¢ > ¢” and

integrals (13) and (14) are absolutely and uniformly convergent.
With the formal usage of the Laplace transform

Uo(x, 1)= [, e™™ Up(x, )dt, (15)
the stated boundary value problem can be converted into the following boundary value problem[6]:
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M(9) Uy (x,7) = X° Uy (x, 7) — vx By (x, 7) = Hy(x, 7,
A@;(x; T) - g%(-xt T) - nt div 176(90 T) = ff(;7 (x, T),

limDax—>yES uO (x; T) = fO (y; T)’ 1imD9x—>y€S 90 (X, T) = f07 (y: T)-

Let us denote this problem by (I,).

The existence and uniqueness theorem of this problem is given in [7].

In order to have the inverse Laplace transform for the function Uy (x,7) and this transform
would give the classical solution of the problem (I,), we should prove some estimates for the
function U, (x,7) and for its up to the second derivatives with respect to 7.

For this purpose, we will present the solution of the problem (I,) by the sum of the solutions
of the following problems:

M@0 Uy (x, 1) — x°7%Uy P (x,7) = 0, (16)

A ) - 283 ) = 0, (17)

limDBx—»yES uo(l) (x, T) = ﬁ)(}’; T); (18)
—~(1)

limDBxﬁyES 00 (x' T) = f;7(y' T)' (19)

@) 027, () O _ar (D
M@0, )Uy " (x,T) — x " T°Up " (x,T) —vxty (x,7) =Hp '(x,7), (20)
Ay 1) = 185 1) = nrdiv TP (1) = Hy PV ), (21)

limDax_,yes UO(Z)(X, T) = 0. (22)
Denote that U, = (U,P, %(1)) and U,® = (‘Uo(z),%@))-

Let us show that UyP (x, 7) and U, @ (x, 7) are analytic functions with respect to v and determine
asymptotic assessments of these functions and their derivatives.

At first we will begin with the function Uy (x, 7). Using the method of partial integration for the
integrals from (13) and (14), according to (11) and (12), and considering the conditions 1, — 5,
from [5], we get:
Ho(x, ) € €1 (D), Ho7 (x,7) € CH(D), (23)
foy, 1) € CHA(S), for (v, 1) € CHA(S). (24)
Then, in the half-plane I1 the following assessments take place:

170Dl ) < s T @D gy <2ee (25)
~ c - c
(V62 T)”(s,o,a) S [1fo7 (v, T)”(S,o,a) S e (26)
170Dl s15 <57 170Dl 5150 St (27)
According to 5, from [5], for the rather high value of |x|, we will have:
— 1 —~ 1
|3{0(x,r)| S#W, |.7'[07(X,T)| S#W (28)

The problems (16) and (18) have the unique solution [8] and can be given as
U P (x, 1) = fs [[T (ay,n(y)) Y (z—y; iT)]] Wy, v)d,S, (29)
where T (E)y, n(y)) is an operator of momentary voltage and W(z — y; it) — a matrix of the
fundamental solutions of the equation (16) [3].
In case of internal problem the vector-function ¥ (y, 7) represents the solution of the integral
equation:
-0+ [T (3,n0)) ¥ - y;i0)] 3.0, = oz D). (30)
And in case of external problem it represents the solution of the integral equation:
Y@+ 5|7 (0, n0)) ¥ -y 0] ¥0,0d,S = foz . (31
In the half-plane I1, the solutions of these equations are analytic with respect to 7, as the

right sides of these equations are analytic functions with respect to 7. Hence, Uy (x, 7) is also an
analytic function with respect to 7.

1298



European Researcher, 2014, Vol.(79), Ne 7-2

According to the Banach theorem, the operators corresponding to the equations (30) and (31)
have inverse operators in the class C%(S). Hence, we have:

I Dlls0 < CllfC T)”(S,O,/‘I) ’

from which, according to (26) we get:

G Do < # . (32)
Analogously, from (27) we have:
I Dl < # (33)
According to (32) and (33), from (27) follows that
RO 6D ¢
||‘uO ¢ || (D*01) — |‘[|8 ’ ||U C, )” (D%,1,1) |‘[|7 : (34)
In case of external problem we will have:
(€9 1 (1) 1
|u0 (X T)l = x |2 |T|8’ axk (x T)| = |x|2 |T|g ’ (35)
where k = 1,2,3 and Tell
For each D* c D takes place the assessment
SUpP,ep* oxron U (1)(x )| < |8 , Tell .
There exists a solution of the problem (17) and (19), it is unique and can be expressed as [3]:
(1) _ efkle
(x,7) = fSan(y) p— ¢;(y,1)d,S,x €D, (36)

where ¢ (x, T) represents a solution of the smgular equatlon

7k|
£9(2,7) t o fS om(@y) lz—yl
for the external and internal problems, respectlvely
As the function fy, (z, 7) is analytic with respect to 7, then the solution of the equation (37) is also

<P7(y,T)d S= —f07(Z ), (37)

analytic with respect to t. Hence, 55(1) (x, 7) will be analytic with respect to 7, as well.

For each 7 € I, according to (26) and (27) and using the Banach theorem, from (37) we will have:

lo7C, D0 <7 107G D12 <75 (38)
Hence, we derive that
M. - D). -

WO“”Mm@%mW%(”Wmmsmv (39)

29, D(x, 1) < mm,x €Dt k=1,2,3. (40)

k
For the highest value of |x| we will have
(€D) 1 g (D
|9 (x, T)| < |x|2|T|6' o 90 (x, T)l < |2| |5,k 1,2, 3.
SUPxep* |5 o%; (1)(x )| < = |6 ,k,j=1,2,3.

From (34), (35) and (39) follows that

|L7(;(T)(x.r)| < (41)
The following assessments are true:
U] <5, xeD. (42)
From (41) and (42) we get that
TG0 < 55 (43)

The auxiliary statement. The following theorem is true [6]:
Theorem. Let 7 € I, then the problem (I), has the unique, analytic solution Uy (x,7) with
respect to 7, for which the following assessments take place:

)T (x,7)| < # |6U0(“) s— for any (x,7) € D X I1
| 2"

-
)|a Jo((x,1) Cl+1 for any (x,7) € D x I
g

xy Co;

0xk6xl

7l
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Cc

c |6[76(x,r)

> for x - o,

Ix2]e]"*3

Up(x,7)| <
3)| 0( ) )l |x|2|r|2+§’ ax,

wherek,l = 1,2, 3.

The main result

Using the above mentioned auxiliary theorem and based on the properties of the Laplace
transform, we prove the following result:

Theorem. The first problem of the thermo-resiliency’s momentum theory has in D; a unique

solution which can be presented as:
U(x,t) = H(x,t) + ﬁfg_iw e™ Uy (x, 7)dt, ¢ > g0,

where U (x, 7) represents the solution of the problem (1), and H(x, t) is a vector-function (¥).

¢+ico

Conclusion

The main task was to convert the first main boundary value problem of the thermo-
resiliency’s momentum theory into the oscillatory problem using the Laplace transform. In the
paper, the solution of the oscillatory problem is found and there are given those conditions, which
enable to prove the existence of the inverse transform. The effective solution of the main boundary
value problem is found using this inverse Laplace transform.
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