UDC 512

On Periodical Properties of 2-Linear Recurring Sequences

Oleg A. Kozlitin

TVP Laboratory, Russia Perovskaya Street 40, 111141, Moscow PhD

E-mail: okozlitin@yandex.ru

Abstract. The cycle structure of one set of 2-linear recurring sequences is researched in this paper. The results are useful to construct a generator of pseudo-random sequences with good periodical properties.

Keywords: cycle structure; k-linear shift register; pseudo-random sequence.

Рост трафика в компьютерных сетях, наблюдающийся в последние десятилетия, ставит новые задачи в области криптографической защиты данных. Один из подходов к их решению заключается в использовании современных поточных криптосистем. Основой любой поточной криптосистемы является генератор псевдослучайных последовательностей (ПСП), свойствами которого во многом определяется качество системы в целом. Поэтому разработка и исследование генераторов ПСП, построенных на новых математических принципах, являются актуальными задачами современной криптографии.

С середины 90-х г.г. прошлого века изучается возможность использования для выработки ПСП линейных регистров сдвига размерности $k \ge 2$ (k – линейных регистров сдвига), вырабатывающих на основе начальной информации (начального отрезка) k – линейную рекуррентную последовательность (k – ЛРП, [1]).

Пусть $k \ge 1$ и R — кольцо с единицей 1. Всякое отображение $u: \mathbb{N}_0^k \to R$ назовем k — мерной последовательностью над кольцом R . Множество всех k — мерных последовательностей над R обозначим через $R^{\langle k \rangle}$. Если

$$R_k = R[x_0, x_1, ..., x_{k-1}],$$

то абелеву группу $(R^{\langle k \rangle},+)$ можно наделить структурой левого R_k – модуля: для всякого вектора $(i_0,i_1,\ldots,i_{k-1})\in \mathbb{N}_0^k$ положим

$$(x_0^{t_0}x_1^{t_1}\cdots x_{k-1}^{t_{k-1}}\cdot u)(i_0,i_1,\ldots,i_{k-1})=u(i_0+t_0,i_1+t_1,\ldots,i_{k-1}+t_{k-1}).$$

Пусть $F_0(x_0), F_1(x_1), \dots, F_{k-1}(x_{k-1}) \in R_k$ – унитарные (со старшим коэффициентом 1)

многочлены. Последовательность $u \in R^{\langle k \rangle}$ называется k – линейной рекуррентной последовательностью с элементарными характеристическими многочленами (э.х.м.) $F_0, F_1, \ldots, F_{k-1}$, если

$$\forall i \in \overline{0, k-1}$$
: $F_i(x_i)u = 0$.

Семейство всех k —линейных рекуррент с э.х.м. F_0, F_1, \dots, F_{k-1} обозначается

$$L_R(F_0, F_1, \dots, F_{k-1})$$
 (1)

и называется k - ЛРП -семейством.

Периодические свойства k —линейных регистров сдвига тесно связаны с цикловым типом $C_{F_0,F_1,\dots,F_{k-1}}(y)$ семейства рекуррент (1). Если

$$t = (t_0, t_1, \dots, t_{k-1}), \quad x = (x_0, x_1, \dots, x_{k-1}), \quad x^t = x_0^{t_0} x_1^{t_1} \cdots x_{k-1}^{t_{k-1}},$$

то под циклом C(u), содержащим рекурренту u из семейства (1), понимается множество

$$C(u) = \{x^t u \mid t \in N_0^k\},\$$

а под его длиной – величина T(u) = |C(u)| (период рекурренты u).

Многочлен

$$C_{F_0,F_1,...,F_{k-1}}(y) = \sum_{t>1} c_t y^t \in \mathbf{Z}[y],$$

где c_t — количество циклов длины t в семействе (1), называется цикловым типом семейства (1).

Описание циклового типа семейства (1) – в данный момент открытая проблема. Начинать ее решение естественно с простейших случаев. Мы вычислим цикловой тип $C_{F,F}(y)$ семейства $L_R(F,F)$ в случае, когда $R={\bf Z}_2$, и

$$F(x) = x^{m} - f_{m-1}x^{m-1} - \dots - f_{1}x - f_{0} -$$

многочлен максимального периода $\tau = 2^m - 1$.

Пусть S(F) – сопровождающая матрица многочлена F(x):

$$S(F) = \begin{pmatrix} 0 & 0 & \cdots & 0 & f_0 \\ 1 & 0 & \cdots & 0 & f_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & f_{m-2} \\ 0 & \cdots & 0 & 1 & f_{m-1} \end{pmatrix},$$

 $\Omega = R_{m,m}$ – пространство $m \times m$ – матриц над полем $R = \mathbf{Z}_2$, φ_0 и φ_1 – автоморфизмы пространства Ω , определенные равенствами

$$\varphi_0(X) = S(F)^T X$$
, $\varphi_1(X) = XS(F)$,

где T – символ операции транспонирования. Согласно [2] характеристический многочлен $\chi_{\sigma}(x)$ автоморфизма $\sigma = \varphi_0^{-1} \varphi_1$ имеет следующее каноническое разложение:

$$\chi_{\sigma}(x) = G_0(x)G_1(x)\cdots G_{m-1}(x),$$
 (2)

где $G_0(x) = (x \oplus 1)^m$, $G_s(x)$ – попарно различные неприводимые над полем R многочлены степени m, s = 1, 2, ..., m-1. Представление (2) индуцирует следующее однозначное разложение всякой матрицы $w \in \Omega$:

$$w = w_0 + w_1 + \dots + w_{m-1}, \tag{3}$$

где $w_s \in \text{Ker } G_s(\sigma), \ s = 0, 1, ..., m-1.$

Положим $\mathbf{F} = \overline{0,m-1} \times \overline{0,m-1}$. Если $u \in L_R(F,F)$, то матрицу $u[\mathbf{F}]$ будем называть начальным отрезком ЛРП u. Пусть w – начальный отрезок ЛРП u, и \mathcal{E}_s – индикатор того, что в разложении (3) слагаемое w_s – ненулевое, $s=0,1,\ldots,m-1$. Вектор

$$\operatorname{typ}(u) = (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{m-1})$$

назовем типом рекурренты u . Пусть $\tau_d = \tau / (2^d - 1)$, $d \mid m$. Справедлива следующая теорема.

ТЕОРЕМА. Пусть $R={\bf Z}_2,\ F(x)\in R[x]$ – многочлен максимального периода степени $m\geq 2$. Тогда:

1. Если $m=d_1>d_2>d_3>\cdots>d_l=1$ – все натуральные делители числа m , то длины циклов семейства $L_R(F,F)$ образуют ряд

$$1 < \tau \tau_{d_1} < \tau \tau_{d_2} < \dots < \tau \tau_{d_l} = \tau^2$$
.

2. Пусть $u\in L_R(F,F)$, и $\operatorname{typ}(u)=(\varepsilon_0,\varepsilon_1,\dots,\varepsilon_{m-1})$. T(u)=1 тогда и только тогда, когда u=0. $T(u)=\tau\tau_d$ тогда и только тогда, когда

$$u \neq 0$$
 и $(\varepsilon_1, 2\varepsilon_2, 3\varepsilon_3..., (m-1)\varepsilon_{m-1}, m) = d$.

3. Цикловой тип $C_{F,F}(y)$ семейства $L_R(F,F)$ выражается формулой

$$y + y^{\tau} + \sum_{d|m, d < m} (\tau \tau_d)^{-1} \sum_{t \mid \frac{m}{d}} \mu \left(\frac{m}{dt}\right) 2^{mt} y^{\tau \tau_d},$$

где μ – функция Мебиуса (см., например, [3]).

Полученные результаты показывают, что почти все рекурренты из семейства $L_R(F,F)$ лежат на циклах максимально возможной длины. С точки зрения возможного использования в криптографии 2-линейный регистр сдвига с равными элементарными характеристическими многочленами максимального периода обладает хорошими периодическими свойствами.

Примечания:

- 1. Кузьмин А.С., Куракин В.Л., Нечаев А.А. Псевдослучайные и полилинейные последовательности // Труды по дискретной математике. М., 1997. Том 1. С. 139-202.
- 2. Козлитин О.А. Периодические свойства 2-линейного регистра сдвига над кольцом Галуа // Обозрение прикладной и промышленной математики. М., 2011. Том 18, вып. 4. С. 513-526.
- 3. Сачков В.Н. Введение в комбинаторные методы дискретной математики. М.: МЦНМО, 2004. 424 с.

УДК 512

О периодических свойствах **2-**линейных рекуррентных последовательностей

Олег Алексеевич Козлитин

Лаборатория ТВП, Россия 111141, Перовская ул., 40, Москва Кандидат физико-математических наук E-mail: okozlitin@yandex.ru

Аннотация. В работе исследуется цикловая структура одного семейства **2**-линейных рекуррентных последовательностей. Полученные результаты могут быть использованы при построении генераторов псевдослучайных последовательностей с хорошими периодическими свойствами.

Ключевые слова: цикловая структура; k-линейный регистр сдвига; псевдослучайная последовательность.